EFFICACY AND SAFETY OF RP1 COMBINED WITH NIVOLUMAB IN PATIENTS WITH ANTI–PD-1–FAILED MELANOMA FROM THE IGNYTE CLINICAL TRIAL

Dr. Michael K. Wong, MD, PhD, FRCPC
The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Key takeaways

Clinical relevance
• Treatment of melanoma patients after progression on an anti-PD-1 containing regimen remains a considerable unmet need

IGNYTE data analysis by investigator review
• Efficacy
 ▪ RP1 combined with nivolumab provides deep and durable responses in patients with advanced melanoma who had confirmed disease progression, while on prior anti–PD-1 therapy for at least 8 weeks, including in combination with anti-CTLA-4
 ▪ The ORR was 33%, with a median duration of response of >36 months (N=156)
• Safety
 ▪ The treatment showed a favorable safety profile with generally ‘on target’ and transient grade 1–2 side effects indicative of systemic immune activation
Background

- There are limited options for melanoma patients who have progressed on anti–PD-1 therapy\(^1\) (including on adjuvant anti–PD-1 therapy)

- Further single agent anti-PD-1 for patients having confirmed PD on prior anti-PD-1 gives a response rate of 6-7\(^%\)\(^{1,2}\)

- For patients who have not received anti–CTLA-4 therapy, ipilimumab or nivolumab + ipilimumab or relatlimab are potential options\(^3\) but toxicity is high\(^4,5\)

- Adding anti-LAG3 to anti–PD-1 has not demonstrated meaningful efficacy in the anti–PD-1–failed setting\(^6\)

- For targeted therapy–naïve patients with BRAF mutant tumors, BRAF-targeted therapy responses are generally transient\(^7\)

- T-VEC + pembrolizumab in patients who progressed on prior anti–PD-1 therapy has limited activity outside of the adjuvant setting, with no responses seen in patients with visceral disease\(^8,9\)

- TIL therapy gives response rates of ~30%, but comes with toxicity (nearly all patients have grade 4 toxicity)\(^10\)

CTLA-4, cytotoxic T-lymphocyte antigen 4; LAG3, lymphocyte-activation gene 3; PD-1, programmed cell death protein 1; TIL, tumor infiltrating lymphocyte

PRESENTED BY: IGNYTE Study design (Anti-PD-1 failed melanoma cohort)

Primary objectives
- To assess the safety and efficacy (by independent central review [mRECIST]) of RP1 in combination with nivolumab

Secondary objective
- ORR by investigator review (mRECIST)
- To assess the efficacy of RP1 in combination with nivolumab as determined by DOR, CR rate, DCR, PFS, by central & investigator review, 1-year and 2-year OS

Key eligibility
Advanced melanoma having confirmed progression while on prior anti-PD-1 therapy; at least 1 measurable and injectable lesion (≥1 cm LD), including deep/visceral; adequate organ function; no prior treatment with oncolytic therapy; ECOG performance status 0–1

Criteria for prior anti-PD-1 failure
≥8 weeks of prior anti-PD-1, confirmed progression while on anti-PD-1; anti-PD-1 must be the last therapy before the clinical trial. Patients on prior adjuvant therapy must have progressed while on prior adjuvant treatment (progression can be confirmed by biopsy)

Tumor response assessment: Radiographic imaging (CT) at baseline and every 8 weeks from first dose and every 12 weeks after confirmation of response

3-year follow-up from last patient enrolled

Study Design

- **Screening:** 28 days
- **First dose:**
 - RP1 1×10⁶ pfu/mL
 - RP1+nivolumab
 - 1×10⁷ pfu/mL, 240 mg
- **2 weeks:**
 - RP1+nivolumab
 - 1×10⁷ pfu/mL, 240 mg
 - Nivolumab 240 mg
- **2 weeks:**
 - Nivolumab 480 mg (Q4W)

Cycle 1
- RP1+nivolumab
- Nivolumab

Cycles 2–8
- RP1+nivolumab
- Nivolumab

Cycle 9
- Nivolumab

Cycles 10–30b
- Nivolumab

Dr. Michael K. Wong, MD, PhD, FRCPC

Notes:
- Dosing with nivolumab begins at dose 2 of RP1 (C2D15).
- Option to reinitiate RP1 for 8 cycles if criteria are met.
- Non-neurological solid tumors
- CR, complete response; CT, computed tomography; DCR, disease control rate; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; LD, longest diameter; ORR, objective response rate; OS, overall survival; PD-1, programmed death protein 1; PFS, progression-free survival; pfu, plaque-forming unit; Q4W, every 4 weeks; RECIST, Response Evaluation Criteria in Solid Tumors.
Baseline clinical characteristics

- A ‘real world’ anti-PD-1 failed melanoma population was enrolled
 - Good representation of each of the sub-groups of patients who progress on prior anti-PD-1 therapy

Patients, n (%)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All patients (N = 156)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median [range])</td>
<td>62 (21-91)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>52 (33.3)</td>
</tr>
<tr>
<td>Male</td>
<td>104 (66.7)</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
</tr>
<tr>
<td>IIIb/IIIc/IVM1a</td>
<td>75 (48.1)</td>
</tr>
<tr>
<td>IVM1b/c/d</td>
<td>81 (51.9)</td>
</tr>
<tr>
<td>Prior therapy</td>
<td></td>
</tr>
<tr>
<td>Anti–PD-1 only as adjuvant therapy</td>
<td>39 (25.0)</td>
</tr>
<tr>
<td>Anti–PD-1 not as adjuvant therapy</td>
<td>117 (75.0)</td>
</tr>
<tr>
<td>Anti–PD-1 & anti–CTLA-4</td>
<td>74 (47.4)</td>
</tr>
<tr>
<td>Received BRAF-directed therapy</td>
<td>17 (10.9)</td>
</tr>
</tbody>
</table>

Other disease characteristics

- Primary resistance to prior anti–PD-1a 105 (67.3)
- Secondary resistance to prior anti–PD-1b,c 51 (32.7)
- BRAF wt 103 (66.0)
- BRAF mutant 53 (34.0)
- LDH ≤ULN 105 (67.3)
- LDH >ULN 50 (32.1)
- LDH unknown 1 (0.6)

The median follow up for all patients on study is 15.4 months (range 0.5-55.5)

a Primary resistance: Progressed within 6 months of starting the immediate prior course of anti–PD-1 therapy; b Secondary resistance: Progressed after 6 months of treatment on the immediate prior course of anti–PD-1 therapy; c Includes 2 pt unknown resistance status. CTLA-4, cytotoxic T-lymphocyte antigen 4; LDH, lactate dehydrogenase; PD-1, programmed cell death protein 1; ULN, upper limit of normal; wt, wild type.
Efficacy

- The data presented today is the **investigator assessed data with all patients having at least 12 months follow up**
 - Centrally reviewed, primary endpoint data, will be presented separately once available

Data cutoff: March 8th 2024. BOR, best overall response; CR, complete response; CTLA-4, cytotoxic T-lymphocyte antigen 4; PD-1, programmed cell death protein 1; PD, progressive disease; PR, partial response; ORR, objective response rate; SD, stable disease.

<table>
<thead>
<tr>
<th>BOR n (%)</th>
<th>All patients (n = 156)</th>
<th>Prior single-agent anti–PD-1 (n = 82)</th>
<th>Prior anti–PD-1/CTLA-4 Exposure (n = 74)a</th>
<th>Stage IIIb-IVM1a (n = 75)</th>
<th>Stage IVM1b-d (n = 81)</th>
<th>1o resistance to anti–PD-1 (n = 105)</th>
<th>2o resistance to anti–PD-1 (n = 51)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 23 (14.7)</td>
<td>18 (22.0)</td>
<td>5 (6.8)</td>
<td>18 (24.0)</td>
<td>6 (7.8)</td>
<td>18 (17.1)</td>
<td>5 (9.8)</td>
<td></td>
</tr>
<tr>
<td>PR 28 (17.9)</td>
<td>13 (15.9)</td>
<td>15 (20.3)</td>
<td>13 (17.3)</td>
<td>15 (18.5)</td>
<td>18 (17.1)</td>
<td>10 (19.6)</td>
<td></td>
</tr>
<tr>
<td>SD 34 (21.8)</td>
<td>18 (22.0)</td>
<td>16 (21.6)</td>
<td>19 (25.3)</td>
<td>15 (18.5)</td>
<td>17 (16.2)</td>
<td>17 (33.3)</td>
<td></td>
</tr>
<tr>
<td>PD 63 (40.4)</td>
<td>31 (37.8)</td>
<td>32 (43.2)</td>
<td>24 (32.0)</td>
<td>39 (48.1)</td>
<td>47 (44.8)</td>
<td>16 (31.4)</td>
<td></td>
</tr>
<tr>
<td>ORR 51 (32.7)c</td>
<td>31 (37.8)</td>
<td>20 (27.0)</td>
<td>31 (41.3)</td>
<td>20 (24.7)</td>
<td>36 (34.3)</td>
<td>15 (29.4)</td>
<td></td>
</tr>
</tbody>
</table>

- Approximately 1 in 3 patients achieved an objective response (32.7%)
- Consistent ORR across subgroups, including:
 - 27% ORR in patients who had prior anti–PD-1 & anti–CTLA-4
 - 34% ORR in patients who are primary resistant to their prior anti-PD-1 therapy

*Eight patients were treated with sequential anti-CTLA-4 and anti-PD-1 (ORR for prior combined anti-CTLA-4/anti-PD-1 was 25.8%).

1Includes one patient with unknown resistance status.

2ORR for the 140 registration intended cohort was 32.1%.

Data cutoff: March 8th 2024.
Responses are Systemic
Change in Size of Individual Injected and Non-injected Lesions

- 70.4% of responding patients had non-injected lesions
 - Responders include patients with minority of lesions injected
 - Injected and non-injected lesions responded with similar duration and kinetics
 - Depth of response independent of whether injected

Responses in non-injected lesions demonstrate systemic benefit

Includes both target and non-target lesions for RECIST assessment, measured from CT/MRI scans for radiologically assessable lesions (responders from the first 75 patients enrolled into the registration intended cohort). 58/75 patients had ≥1 non-injected lesion, of whom 15 achieved a response based on those lesions only (excludes possible response in injected lesions); ORR of 25.9% on the basis of non-injected lesions only. First presented at ASCO 2023.
Presented by: Dr. Michael K. Wong, MD, PhD, FRCPC

Responses are durable, with a median DOR by Kaplan-Meier estimate of **36.6 months**

The median follow up for responders is 27.9 months (range 10.5-55.5)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Probability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>6 months</td>
<td>100%</td>
</tr>
<tr>
<td>>12 months</td>
<td>84.2%</td>
</tr>
<tr>
<td>>18 months</td>
<td>74.9%</td>
</tr>
<tr>
<td>>24 months</td>
<td>65.2%</td>
</tr>
</tbody>
</table>

Data cutoff: March 8th 2024. Duration of response defined as time from baseline to end of response for responders. DOR, duration of response.
A substantial proportion of patients achieved durable clinical benefit, including those with SD, with a 55% disease control rate overall.

65% of responses are ongoing at the time of this analysis.

Data cutoff: March 8th 2024. The target lesion response is shown for patients with at least one post-baseline assessment. CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.
Patient examples

Patient 1121-2011: Stage IVM1c, progressed on prior nivolumab (adjuvant) and pembrolizumab (1L); CR

Patient 1156-2008: Stage IVM1b, BRAF-mutant, progressed on prior nivolumab (1L); PR

Responses seen in non-injected distant & visceral tumors
Safety: Treatment-related AEs (N = 156)

RP1 combined with nivolumab continues to be a generally well tolerated regimen
- Predominantly grade 1 and 2 constitutional-type side effects
- Low incidence of grade 3 and 4 events
- No grade 5 events

<table>
<thead>
<tr>
<th>Preferred term, n (%)</th>
<th>TRAEs occurring in >5% of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1–2</td>
</tr>
<tr>
<td>Chills</td>
<td>53 (34.0)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>51 (32.7)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>49 (31.4)</td>
</tr>
<tr>
<td>Nausea</td>
<td>35 (22.4)</td>
</tr>
<tr>
<td>Influenza-like illness</td>
<td>30 (19.2)</td>
</tr>
<tr>
<td>Injection-site pain</td>
<td>23 (14.7)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>21 (13.5)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>21 (13.5)</td>
</tr>
<tr>
<td>Headache</td>
<td>20 (12.8)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>20 (12.8)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>13 (8.3)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>11 (7.1)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>11 (7.1)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>9 (5.8)</td>
</tr>
<tr>
<td>Rash</td>
<td>9 (5.8)</td>
</tr>
</tbody>
</table>

Additional grade 3 and 4 events <5%

Grade 3: Two each of rash maculo-papular and hypophysitis; 1 each of tumor pain, infusion-related reaction, muscular weakness, abdominal pain, amylase increased, dermatitis bullous, eczema, immune-mediated enterocolitis, immune-mediated hepatitis, paresthesia, acute left ventricular failure, arthritis, cancer pain, enterocolitis, extranodal marginal zone B-cell lymphoma (MALT type), hyponatremia, injection site necrosis, left ventricular dysfunction, memory impairment, meningitis aseptic, edema, palmar-plantar erythrodysesthesia syndrome, peripheral sensory neuropathy, radiculitis brachial, sinus arhythmia, tricuspid valve incompetence, and type 1 diabetes mellitus

Grade 4: One each of lipase increased, alanine aminotransferase increased, blood bilirubin increased, cytokine release syndrome, myocarditis, and hepatic cytolysis, splenic rupture

Data cutoff: March 8th 2024. MALT, mucosa-associated lymphoid tissue; TRAE, treatment-related adverse event.
Conclusions

RP1 combined with nivolumab in melanoma patients who had **confirmed progression** on prior anti-PD-1 continues to show:

- Deep and durable, systemic responses
- **A favorable safety profile**, with generally ‘on target’ and transient grade 1–2 side effects indicative of systemic immune activation

- **Approximately 1 in 3 patients experienced a response**
 - 27% ORR in patients had prior anti–PD-1/anti–CTLA-4
 - 34% ORR in patients who had primary resistance to their immediate prior anti-PD-1 therapy
 - Clinically meaningful activity was seen across all enrolled subgroups
 - Approximately 55% of patients experienced clinical benefit (CR + PR + SD)

- **Responses were highly durable**
 - All patients followed for at least 12 months
 - All responses lasted at least 6 months, with median DOR >36 months

Based on these results, a confirmatory randomized phase 3 study is in the start-up phase (IGNYTE-3; NCT06264180); Poster #TPS9604 Centrally reviewed primary & secondary endpoint data from the study will be presented separately once available
Acknowledgements

• We would like to thank the patients for their participation in the trial, as well as their family members.
• We would also like to thank the site staff and principal investigators for their critical contributions to this study.

Dr. Jason Chesney, University of Louisville
Dr. Jiaxin Niu, Banner MD Anderson
Dr. Terence Rhodes, Intermountain Cancer Center - Saint George
Dr. Katy Tsai, UCSF/Helen Diller Family Comprehensive Cancer Center
Dr. Ari Vanderwalde, West Cancer Clinic
Dr. Evan Hall, University of Washington Seattle Cancer Care Alliance
Dr. Tanya Bowles, Intermountain Medical Center
Dr. Mohammed Milhem, University of Iowa
Dr. Gregory Daniels, UCSD Moores Cancer Center
Dr. Bartosz Chmielowski, University of California, Los Angeles
Dr. John Fruehauf, University of California, Irvine
Dr. Gino In, USC Norris Comprehensive Cancer Center
Dr. Georgia Beasley, University of California, Irvine
Dr. Trisha Wise-Draper, University of Alabama
Dr. Robert McWilliams, Duke Cancer Institute
Dr. Manesh Seetharam, Mayo Clinic - Rochester
Dr. Issam Makhoul, Mayo Clinic - Arizona
Dr. Mike Wong, MD Anderson Cancer Center
Dr. Celeste Lebbe, Hôpital Saint Louis APHP
Dr. Sophie Dalac-Rat, CHU Dijon
Dr. Caroline Gaudy, Cancerologie Cutanée Hopital de la Timone
Dr. Charlee Nardin, CHU Besancon – Hopital Jean Minjoz
Dr. Antoine Italiano, Institut Bergonié
Dr. Mona Amini Adle, Centre Léon Bérard
Dr. Georgia Beasley, University of Cincinnati Medical Center
Dr. Robert McWilliams, Mayo Clinic - Rochester
Dr. Manesh Seetharam, Mayo Clinic - Arizona
Dr. Issam Makhoul, Mayo Clinic - Arizona
Dr. Mike Wong, MD Anderson Cancer Center
Dr. Celeste Lebbe, Hôpital Saint Louis APHP
Dr. Sophie Dalac-Rat, CHU Dijon
Dr. Caroline Gaudy, Cancerologie Cutanée Hopital de la Timone
Dr. Charlee Nardin, CHU Besancon – Hopital Jean Minjoz
Dr. Antoine Italiano, Institut Bergonié
Dr. Mona Amini Adle, Centre Léon Bérard

The IGNYTE study is currently recruiting patients, except for anti–PD-1–failed melanoma patients. To learn more about enrolling your patient, contact clinicaltrials@replimune.com or +1 (781) 222 9570.

Acknowledgements

We would like to thank the patients for their participation in the trial, as well as their family members. We would also like to thank the site staff and principal investigators for their critical contributions to this study.

Dr. Jiaxin Niu, Banner MD Anderson
Dr. Terence Rhodes, Intermountain Cancer Center - Saint George
Dr. Katy Tsai, UCSF/Helen Diller Family Comprehensive Cancer Center
Dr. Ari Vanderwalde, West Cancer Clinic
Dr. Evan Hall, University of Washington Seattle Cancer Care Alliance
Dr. Tanya Bowles, Intermountain Medical Center
Dr. Mohammed Milhem, University of Iowa
Dr. Gregory Daniels, UCSD Moores Cancer Center
Dr. Bartosz Chmielowski, University of California, Los Angeles
Dr. John Fruehauf, University of California, Irvine
Dr. Gino In, USC Norris Comprehensive Cancer Center
Dr. Georgia Beasley, University of California, Irvine
Dr. Trisha Wise-Draper, University of Alabama
Dr. Robert McWilliams, Duke Cancer Institute
Dr. Manesh Seetharam, Mayo Clinic - Rochester
Dr. Issam Makhoul, Mayo Clinic - Arizona
Dr. Mike Wong, MD Anderson Cancer Center
Dr. Celeste Lebbe, Hôpital Saint Louis APHP
Dr. Sophie Dalac-Rat, CHU Dijon
Dr. Caroline Gaudy, Cancerologie Cutanée Hopital de la Timone
Dr. Charlee Nardin, CHU Besancon – Hopital Jean Minjoz
Dr. Antoine Italiano, Institut Bergonié
Dr. Mona Amini Adle, Centre Léon Bérard

The IGNYTE study is currently recruiting patients, except for anti–PD-1–failed melanoma patients. To learn more about enrolling your patient, contact clinicaltrials@replimune.com or +1 (781) 222 9570.

Additional information can be obtained by visiting Clinicaltrials.gov (NCT03767348).