

Initial Results From an Open-Label Phase 1b/2 Study of RP1 Oncolytic Immunotherapy in Solid Organ Transplant Recipients With Advanced Cutaneous Malignancies (ARTACUS)

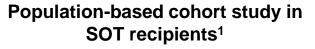
<u>Michael R. Migden¹</u>, Wanxing Chai-Ho², Gregory A. Daniels³, Theresa Medina⁴, Trisha M. Wise-Draper⁵, Meenal Kheterpal⁶, Jennifer C. Tang⁷, Sherrif F. Ibrahim⁸, Diana Bolotin⁹, Claire Verschraegen¹⁰, Nathalie C. Zeitouni¹¹, Katy K. Tsai¹², Laxminarasimha Donthireddy¹³, Praveen K. Bommareddy¹³, Jeannie W. Hou¹³, Walter Hong¹³, Diwakar Davar¹⁴

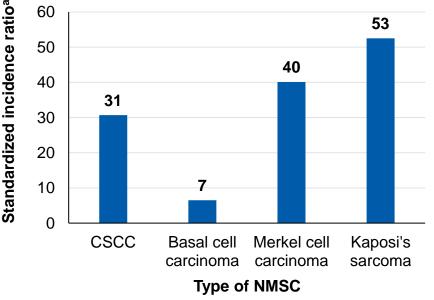
¹MD Anderson Cancer Center, Houston, TX, USA; ²UCLA David Geffen School of Medicine, Los Angeles, CA, USA; ³Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; ⁴University of Colorado Cancer Center, Aurora, CO, USA; ⁵Division of Hematology and Oncology, University of Cincinnati, Cincinnati, OH, USA; ⁶Department of Dermatology, Duke University Medical Center, Durham, NC, USA; ⁷University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA; ⁸Rochester Dermatologic Surgery, Victor, NY, USA; ⁹University of Chicago Department of Medicine, Section of Dermatology, Chicago, IL, USA; ¹⁰Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ¹¹University of Arizona College of Medicine and US Dermatology Partners, Phoenix, AZ, USA; ¹²Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; ¹³Replimune, Inc., Woburn, MA, USA; ¹⁴UPMC Hillman Cancer Center, Pittsburgh, PA, USA

Presentation Number: CT003

Disclosure Information

Michael R. Migden

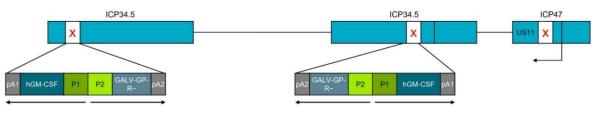

I have the following relevant financial relationships to disclose:


- Paid advisor for: Feldan, Regeneron Pharmaceuticals, Replimune, Inc., Sanofi, Stamford Pharmaceuticals, and Sun Pharmaceutical Industries
- Received research funding from: Regeneron Pharmaceuticals, Replimune, Inc., Sanofi, and Senhwa

Background: Solid Organ Transplantation and Non-Melanoma Skin Cancer

- Non-melanoma skin cancer (NMSC) is the most common post-transplant malignancy in solid organ transplant (SOT) recipients and occurs at a 7–53x higher incidence vs the general population¹
 - >90% of NMSCs in SOT recipients are cutaneous squamous cell carcinoma (CSCC) or basal cell carcinoma^{1,2}
 - Systemic immune checkpoint blockade is contra-indicated in the setting of SOTassociated NMSC, given the documented risk of allograft rejection^{3,4}
- Optimal management of NMSC in SOT is not well established^{3,4}

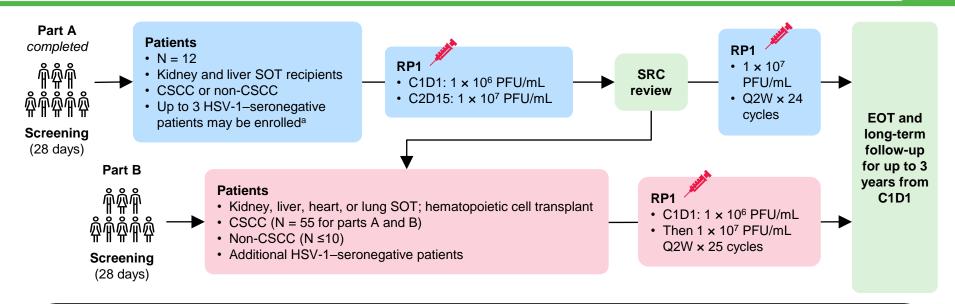
^aStandardized incidence ratios were calculated by dividing the observed number of NMSC cases by the expected number of cases based on the general population.


1. Friman T, et al. Int J Cancer. 2022;150(11):1779-91. 2. Garrett G, et al. JAMA Dermatol. 2017;153(3):296-303. 3. Mittal A and Colegio O. Am J Transplant. 2017;17(10):2509-30.

4. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Squamous Cell Skin Cancer. Version 1.2024.

Background: RP1

 RP1 is an oncolytic immunotherapy (HSV-1) that expresses GM-CSF and a fusogenic glycoprotein (GALV-GP-R-)¹


 When used in combination with intravenous nivolumab, intratumoral RP1 demonstrated a high rate of deep and durable responses in non-SOT patients with advanced skin cancers (IGNYTE study)²

Objective: To assess the safety and efficacy of RP1 monotherapy in SOT recipients with skin cancers (NCT04349436)

GALV-GP-R-, gibbon ape leukemia virus glycoprotein with the R sequence deleted; GM-CSF, granulocyte-macrophage colony-stimulating factor; hGM-CSF, human GM-CSF; HSV-1, herpes simplex virus type 1; ICP, infected cell protein; pA, polyA signal; SOT, solid organ transplant; X, denotes inactivation of viral protein. 1. Thomas S. et al. J Immunother Cancer. 2019;7(1):214. 2, Milhem M. et al. J Clin Oncol. 2022;40(suppl 16):9553.

RP1 is administered via direct or ultrasound-guided IT injection into superficial, cutaneous, subcutaneous, or nodal solid tumors. Deep visceral organ or nonsolid tumors (eg, malignant pleural effusions, malignant ascites, cerebral spinal fluid, etc); tumors in the brain, bone, or spinal cord; or tumors in transplanted organs are not eligible for RP1 injection

^aAfter 3 seronegative patients were enrolled, safety in this population was assessed by the SRC, who approved continued enrollment of seronegative patients. One cycle = 2 weeks. The treatment period is up to 52 weeks (one year).

C, cycle; CSCC, cutaneous squamous cell carcinoma; D, day; EOT, end of treatment; HSV-1, herpes simplex virus type 1; IT, intratumoral; PFU, plaque-forming unit; Q2W, every 2 weeks; SOT, solid organ transplant; SRC, safety review committee.

Methods: Key Eligibility Criteria and Endpoints

Key eligibility criteria

Inclusion

Exclusion

- Solid organ or hematopoietic cell transplant recipients with recurrent, locally advanced, or metastatic cutaneous malignancies including CSCC, BCC, Merkel cell carcinoma, and melanoma
- At least 1 measurable tumor ≥1 cm in longest diameter or ≥1.5 cm in shortest diameter for lymph nodes and injectable lesions that, in aggregate, comprise ≥1 cm in longest diameter
- ECOG PS ≤1 and adequate hepatic, renal, and hematologic function
- Stable allograft function including allograft cfDNA
- No more than 1 prior systemic therapy for cutaneous malignancy

- Prior treatment with an oncolytic therapy
- Active significant herpetic infections or prior complications of HSV-1 infection
- A history of transplant-related viral infections requiring treatment or modification to immunosuppression, such as BKV, EBV, or CMV, within 3 months of study entry
- Patients with visceral metastases
- Other active malignancy (other than the disease under study) within 3 years of the first dose of RP1

Primary

 Investigator-assessed ORR per modified RECIST 1.1

AACCR American Association for Cancer Research

ANNUAL MEETING

2024 • SAN DIEGO APRIL 5-10 • AACR.ORG/AACR24 • #AACR24

• Safety and tolerability

Secondary

- Duration of response, complete response rate, disease control rate, and progression-free survival by investigator review; 1-year and 2-year overall survival rates
- Quality of life score (EORTC QLQ-C30)

Exploratory

• Biomarker analysis

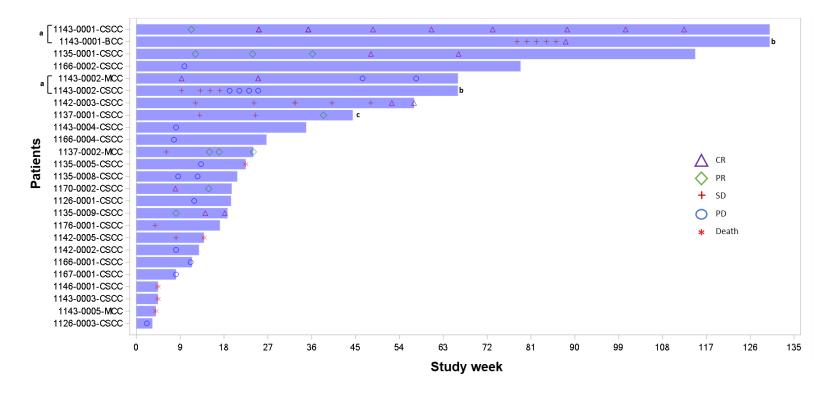
BCC, basal cell carcinoma; BKV, BK virus; cfDNA, cell-free DNA; CMV, cytomegalovirus; CSCC, cutaneous squamous cell carcinoma; EBV, Epstein-Barr virus; ECOG PS, Eastern Cooperative Oncology Group performance status; EORTC QLQ-C30, European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30; HSV-1, herpes simplex virus type 1; ORR, objective response rate; RECIST, Response Evaluation Criteria in Solid Tumors.

Results: Patient Demographics and Baseline Characteristics

Characteristic	All patients (N = 27)	Characteristic	All patients (N = 27)
Age, years, median (range)	68.0 (48–86)	Cutaneous malignancies, n (%)	
Male , n (%)	21 (77.8)	CSCC	24 (88.9)
Race, n (%) White	26 (96.3)	MCC	3 (11.1)
Native Hawaiian/Pacific Islander	1 (3.7)	Stage at study baseline, n (%)	
Allograft type, n (%)		Locally advanced	15 (55.6)
Kidney	22 (81.5)	Metastatic ^a	12 (44.4)
Liver	4 (14.8)	Primary tumor location, n (%)	
Lung	1 (3.7)	Skin	26 (96.3)
Heart	0	Lymph node	1 (3.7)

Data cutoff: September 18, 2023

Results: Efficacy


	Evaluable patients ^a (N = 23)		Responders (n = 8)
Best overall response per modified RECIST 1.1	n (%)	Characteristics of responders	n
CR	5 (21.7) ^b	Tumor type	
PR	3 (13.0)°	CSCC	6 ^b
SD	1 (4.3)	MCC	2
PD	14 (60.9)	Stage at study baseline	
ORR (CR + PR)	8 (34.8)	Locally advanced	6
DCR (CR + PR + SD)	9 (39.1)	Metastatic	2

^aEnrolled ≥3 months before the data cutoff; 4 patients who discontinued the study for reasons unrelated to NMSC or RP1-related adverse events (1 death each from COVID-19, stroke, and pneumonia and 1 withdrawal because of injection pain) were excluded from the efficacy analysis. The median study follow-up time for all enrolled patients (N = 27) was 18.7 weeks as of September 18, 2023. ^bOne patient with CSCC also had CR of a new primary BCC, which appeared post baseline and was also treated with RP1. ^cOne PR could not be confirmed because the patient withdrew consent; all other responses are confirmed.

BCC, basal cell carcinoma; COVID-19, coronavirus disease 2019; CR, complete response; CSCC, cutaneous squamous cell carcinoma; DCR, disease control rate; MCC, Merkel cell carcinoma; NMSC, non-melanoma skin cancer; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

Results: Response Profile Over Time

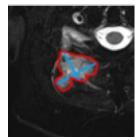
^aA second primary skin cancer that developed on study was allowed to be treated with RP1, per protocol. ^bSecond primary malignancy. ^cWithdrew consent. BCC, basal cell carcinoma; CR, complete response; CSCC, cutaneous squamous cell carcinoma; MCC, Merkel cell carcinoma; PD, progressive disease; PR, partial response; SD, stable disease.

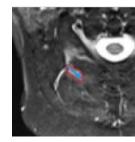
Results: Examples of Patients With Confirmed Response

1135-0009 April 2023

June 2023 (2 months)

Complete response


1142-0003 August 2022


September 2023 (13 months)

1137-0002^a March 2023

September 2023 (6 months)

Partial response

^aRight paraspinal muscle metastasis at C1-C2 level.

Results: Examples of Patients With Confirmed Response

1135-0001 July 2021

October 2021 (3 months)

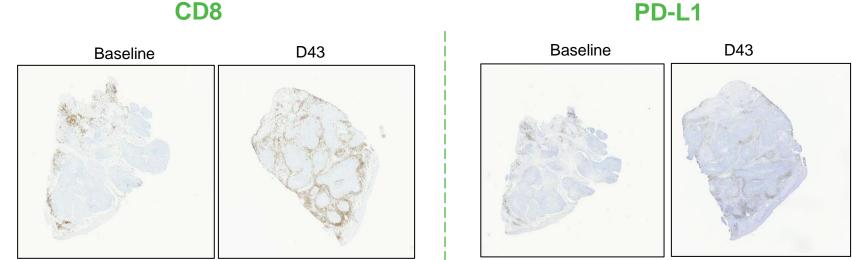
Complete response

1143-0002 May 2022

August 2022 (3 months)

Complete response

1143-0001 June 2021


December 2021 (6 months)

Complete response

Results: Biomarkers

Patient 1142-0003

 IHC analysis from tumor biopsies indicated influx of CD8+ T cells and upregulation of PD-L1 expression after treatment

Results: Safety Profile

All-grade TEAEs (>10% of patients), n (%)	All patients (N = 27)		All-grade TEAEs	All patients (N = 27)			
	Grade 1/2	Grade ≥3	Total	(>10% of patients), n (%)	Grade 1/2	Grade ≥3	Total
Fatigue	9 (33.3)	0	9 (33.3)	Headache	4 (14.8)	0	4 (14.8)
Chills	7 (25.9)	0	7 (25.9)	Injection-site pain	4 (14.8)	0	4 (14.8)
Pyrexia	7 (25.9)	0	7 (25.9)	Cellulitis	2 (7.4)	1 (3.7)	3 (11.1)
Anemia	2 (7.4)	3 (11.1)	5 (18.5)	Confusional state	3 (11.1)	0	3 (11.1)
Blood creatinine	5 (18.5)	0 5	5 (19 5)	Constipation	3 (11.1)	0	3 (11.1)
increased	5 (16.5)	0	5 (16.5)	5 (18.5) Facial pain	3 (11.1)	0	3 (11.1)
Nausea	5 (18.5)	0	5 (18.5)	Hypercalcemia	3 (11.1)	0	3 (11.1)
Urinary tract infection	3 (11.1)	2 (7.4)	5 (18.5)	Hyperglycemia	2 (7.4)	1 (3.7)	3 (11.1)
Decreased appetite	4 (14.8)	0	4 (14.8)	Sepsis	0	3 (11.1)	3 (11.1)
Diarrhea	4 (14.8)	0	4 (14.8)	Tumor pain	2 (7.4)	1 (3.7)	3 (11.1)

The most common TEAEs were fatigue (33.3%), chills (25.9%), and pyrexia (25.9%)

- No evidence of allograft rejection
- Seventeen patients had at least 1 grade ≥3 AE, all unrelated to RP1
- Eight deaths were reported: disease progression (n = 3); pneumonia (n = 2); sepsis, stroke, and pulmonary hypertension (n = 1 each); none were related to RP1

Other grade 3 TEAEs were encephalopathy and hyperkalemia (n = 2 each) and COVID-19, cerebrovascular accident, hematuria, hypertension, hyponatremia, mental status changes, tumor hemorrhage, aspiration, calciphylaxis, infusion-related reaction, lipase increased, pneumonia aspiration, staphylococcal infection, and *Pseudomonas* wound infection (n = 1 each). Grade 4 TEAEs were sepsis, cerebrovascular accident, mental status changes, COVID-19 pneumonia, and seizure (n = 1 each). Grade 5 TEAEs were disease progression (n = 2) and sepsis, cerebrovascular accident, and COVID-19 pneumonia (n = 1 each). AE, adverse event; COVID-19, coronavirus disease 2019; TEAE, treatment-emergent AE.

Conclusions

- This is the first clinical trial assessing intratumoral RP1 monotherapy in solid organ transplant patients on chronic immunosuppressive treatment with advanced skin cancer in whom systemic immunotherapy is typically contra-indicated
- RP1 monotherapy showed robust antitumor activity, with an ORR of 34.8% (5/23 [21.7%] confirmed CR) in evaluable patients, with most responses ongoing
- No allograft rejection was observed including in hepatic and lung allografts
- RP1 monotherapy was well tolerated, and the safety profile was similar to the profile in non-immunocompromised patients with advanced skin cancers (IGNYTE study)

Acknowledgments

 The authors would like to thank the patients, their families, and the site staff/investigators for their participation in the trial

ARTACUS is currently recruiting patients. To learn more about enrolling your patient, contact clinicaltrials@replimune.com or +1 (781) 222 9570.

Additional information can be obtained by visiting Clinicaltrials.gov (NCT04349436).